Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Food Chem X ; 22: 101365, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623506

RESUMO

This review focuses on changes in nutrition and functional properties of protein-rich foods, primarily attributed to alterations in protein structures. We provide a comprehensive overview and comparison of commonly used laboratory methods for protein structure identification, aiming to offer readers a convenient understanding of these techniques. The review covers a range of detection technologies employed in food protein analysis and conducts an extensive comparison to identify the most suitable method for various proteins. While these techniques offer distinct advantages for protein structure determination, the inherent complexity of food matrices presents ongoing challenges. Further research is necessary to develop and enhance more robust detection methods to improve accuracy in protein conformation and structure analysis.

2.
Bioinspir Biomim ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631361

RESUMO

This paper presents a novel approach for designing a fail-safe bending-resistant structure from the combination of explicit discrete component-based topology optimization and the porcupine quill-inspired features. To achieve fail-safe functionalities under classical topology optimization formulations, the method involves constructing discrete components at various scales to imitate the quill's foam-like characteristics. The components are iteratively updated, and the optimization process allows for the grading of quill-inspired features while achieving optimal structural compliance under bending loads. The proposed approach is demonstrated to be effective through the resolution of Messershmitt-Bolkow-Blohm (MBB) beam designs, parameterized studies of geometric parameters, and numerical validation of long-span and short-span quill-inspired beam designs. By examining the von Mises stress distribution, the study highlights the mitigation of material yielding brought by the geometric features of porcupine quills, leading to the potential theory support for the fail-safe capability. The optimized MBB beams are manufactured using the material extrusion (MEX) technique, and three-point bending tests are conducted to explore the failure mitigation capability of the quill-inspired beam under large deformation. Consequently, the study concludes that the proposed quill-inspired component-based topology optimization approach can design a fail-safe structure according to the improved energy absorption as well as increased deformation after reaching 75% peak load. .

3.
Food Chem ; 448: 139164, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574717

RESUMO

The use of soy protein isolate (SPI) nanoparticles as a stabilizer in nano-emulsion systems has garnered significant interest. While metal-phenolic networks (MPNs) have been explored for their multifunctional surface modification capabilities, their integration with food protein-based delivery systems remains less explored. In this study, we attempt to develop a novel strategy to encapsulate cinnamaldehyde using MPNs (EGCG-Fe3+) with self-assembling soy protein nanoparticles (SE-Fe NPs) as a stabilizer for nano-emulsions. UV, Raman, and X-ray photoelectron spectroscopy analyses demonstrated that SE-Fe NPs were generated through metal-phenolic coordination and covalent interactions. SE-Fe NPs had a narrower particle size distribution and enhanced radical scavenging (up to 3.35-fold), as well as thermal stability. Furthermore, the smaller droplet size, higher modulus, higher cinnamaldehyde encapsulation efficiency (from 63.5% to 84.2%), and improved bio-accessibility of SE-Fe NPs stabilized nano-emulsions delivery system demonstrated in this study shows promising future applications in the food industry.

4.
Asian J Surg ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604849

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous liver tumor. The associations between histopathological feature and prognosis of ICC are limited. The present study aimed to investigate the prognostic significance of glandular structure and tumor budding in ICC. METHODS: Patients received radical hepatectomy for ICC were included. Glandular structure and tumor budding were detected by Hematoxylin-eosin staining. The Kaplan-Meier method and the Cox proportional hazards regression model were used to calculate the survival and hazard ratio. Based on the results of multivariate analysis, nomograms of OS and DFS were constructed. C-index and Akaike information criterion (AIC) were used to assess accuracy of models. RESULTS: A total of 323 ICC patients who underwent surgery were included in our study. Glandular structure was associated with worse overall survival (OS) [hazard ratio (HR): 2.033, 95% confidence interval (CI): 1.047 to 3.945] and disease-free survival (DFS) [HR: 1.854, 95% CI: 1.082 to 3.176]. High tumor budding was associated with worse DFS [HR: 1.636, 95%CI: 1.060 to 2.525]. Multivariate analysis suggested that glandular structure, tumor number, lymph node metastasis, and CA19-9 were independent risk factors for OS. Independent predictor factors for DFS were tumor budding, glandular structure, tumor number, and lymph node metastasis. The c-index (0.641 and 0.642) and AIC (957.69 and 1188.52) showed that nomograms of OS and DFS have good accuracy. CONCLUSION: High tumor budding and glandular structure are two important histopathological features that serve as prognostic factors for ICC patients undergoing hepatectomy.

5.
Sci Total Environ ; : 172515, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642759

RESUMO

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.

7.
Phytomedicine ; 128: 155477, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38489890

RESUMO

BACKGROUND: The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE: This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS: The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor ß1 (TGF-ß1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS: Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION: This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.

8.
J Asian Nat Prod Res ; : 1-12, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477295

RESUMO

Nineteen isosteviol derivatives were designed and synthesized by C-16, C-19 and D-ring modifications of isosteviol. These compounds were screened for their cytotoxic activities against Hela and A549 cells in vitro. Among them, the inhibitory effect of compounds 3b and 16 on Hela cells was comparable to that of the positive control gefitinib, and the compounds 3b (IC50=7.84 ± 0.84 µM) and 7a (IC50=6.89 ± 0.33 µM) exhibited significant cytotoxicity superior to gefitinib (IC50=11.02 ± 3.27 µM) against A549 cells.

9.
Front Immunol ; 15: 1337105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481992

RESUMO

Background: The molecular mechanisms of hepatic fibrosis (HF), closely related to autophagy, remain unclear. This study aimed to investigate autophagy characteristics in HF. Methods: Gene expression profiles (GSE6764, GSE49541 and GSE84044) were downloaded, normalized, and merged. Autophagy-related differentially expressed genes (ARDEGs) were determined using the limma R package and the Wilcoxon rank sum test and then analyzed by GO, KEGG, GSEA and GSVA. The infiltration of immune cells, molecular subtypes and immune types of healthy control (HC) and HF were analyzed. Machine learning was carried out with two methods, by which, core genes were obtained. Models of liver fibrosis in vivo and in vitro were constructed to verify the expression of core genes and corresponding immune cells. Results: A total of 69 ARDEGs were identified. Series functional cluster analysis showed that ARDEGs were significantly enriched in autophagy and immunity. Activated CD4 T cells, CD56bright natural killer cells, CD56dim natural killer cells, eosinophils, macrophages, mast cells, neutrophils, and type 17 T helper (Th17) cells showed significant differences in infiltration between HC and HF groups. Among ARDEGs, three core genes were identified, that were ATG5, RB1CC1, and PARK2. Considerable changes in the infiltration of immune cells were observed at different expression levels of the three core genes, among which the expression of RB1CC1 was significantly associated with the infiltration of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. In the mouse liver fibrosis experiment, ATG5, RB1CC1, and PARK2 were at higher levels in HF group than those in HC group. Compared with HC group, HF group showed low positive area in F4/80, IL-17 and CD56, indicating decreased expression of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. Meanwhile, knocking down RB1CC1 was found to inhibit the activation of hepatic stellate cells and alleviate liver fibrosis. Conclusion: ATG5, RB1CC1, and PARK2 are promising autophagy-related therapeutic biomarkers for HF. This is the first study to identify RB1CC1 in HF, which may promote the progression of liver fibrosis by regulating macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell.


Assuntos
Cirrose Hepática , Macrófagos , Camundongos , Animais , Fibrose , Macrófagos/patologia , Autofagia/genética , Aprendizado de Máquina
10.
Public Health ; 228: 137-146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354583

RESUMO

OBJECTIVES: The epidemiological trends of cardiovascular disease (CVD) burden attributed to low physical activity (LPA) across various regions and countries are poorly understood. Hence, we assessed the global, regional, and national spatiotemporal trends of LPA-related CVD from 1990 to 2019. STUDY DESIGN: We conducted a secondary analysis of the Global Burden of Disease Study 2019. The data on LPA-related CVD were examined with regard to sex, age, year, and Socio-Demographic Index (SDI). METHODS: We assessed the temporal changes in age-standardized mortality rate (ASMR) and age-standardized death rate (ASDR) using the estimated annual percentage change (EAPC) over a 30-year period. RESULTS: There were a staggering 0.64 million deaths and 9.99 million disability-adjusted life-years globally attributed to LPA-related CVD in 2019. The majority of the LPA-related CVD burden was observed in the population aged ≥80 years. It also indicated a high disease burden of LPA-related CVD in Central Asia, Arabian Peninsula, and North Africa. Although there has been a decline in ASMR and ASDR associated with LPA-related CVD on a global scale, the countries experiencing the most substantial increase in LPA-related CVD burden are Uzbekistan, Tajikistan, and Azerbaijan. The ASMR and ASDR remained stable in regions with low, low-middle, and middle SDI levels. The EAPCs of ASMR and ASDR were negatively linked with SDI in 2019. CONCLUSIONS: From 1990 to 2019, LPA led to a significant and escalating burden of CVD in certain regions, namely, Uzbekistan, Tajikistan, and Azerbaijan. It is imperative for governments and policymakers to implement regulatory measures and strategic interventions aimed at mitigating this burden.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/epidemiologia , Carga Global da Doença , Percepção Social , África do Norte , Exercício Físico , Saúde Global , Anos de Vida Ajustados por Qualidade de Vida
11.
Chin Med ; 19(1): 21, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310315

RESUMO

Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.

12.
Cancer Immunol Res ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393969

RESUMO

Solid tumors are dense three-dimensional (3D) multi-cellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contributions of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that while ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFN-γ, and cytolytic T cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.

13.
United European Gastroenterol J ; 12(2): 261-272, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38340308

RESUMO

In recent years, advances have been made for treating ascites in patients with cirrhosis. Recent studies have indicated that several treatments that have been used for a long time in the management of portal hypertension may have beneficial effects that were not previously identified. Long-term albumin infusion may improve survival in patients with cirrhosis and ascites while beta-blockers may reduce ascites occurrence. Transjugular intrahepatic porto-systemic shunt (TIPS) placement may also improve survival in selected patients in addition to the control with ascites. Low-flow ascites pump insertion can be another option for some patients with intractable ascites. In this review, we summarize the latest data related to the management of ascites occurring in cirrhosis. There are still unanswered questions, such as the optimal use of albumin as a long-term therapy, the place of beta-blockers, and the best timing for TIPS placement to improve the natural history of ascites, as well as the optimal stent diameter to reduce the risk of shunt-related side-effects. These issued should be addressed in future studies.


Assuntos
Ascite , Derivação Portossistêmica Transjugular Intra-Hepática , Humanos , Ascite/diagnóstico , Ascite/etiologia , Ascite/terapia , Resultado do Tratamento , Cirrose Hepática/complicações , Cirrose Hepática/terapia , Albuminas
14.
Cell Metab ; 36(4): 839-856.e8, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38367623

RESUMO

Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.


Assuntos
Coração , Lisofosfolipídeos , Esfingolipídeos , Esfingosina/análogos & derivados , Animais , Esfingolipídeos/metabolismo , Isoenzimas , Mamíferos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
15.
Mol Ecol Resour ; 24(4): e13939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372463

RESUMO

Utilization of faeces has long been a popular approach for genetic and ecological studies of wildlife. However, the success of molecular marker genotyping and genome resequencing is often unpredictable due to insufficient enrichment of endogenous DNA in the total faecal DNA that is dominated by bacterial DNA. Here, we report a simple and cheap method named PEERS to predominantly lyse animal cells over bacteria by using sodium dodecyl sulphate so as to discharge endogenous DNA into liquid phase before bacterial DNA. By brief centrifugation, total DNA with enriched endogenous fraction can be extracted from the supernatant using routine methods. Our assessments showed that the endogenous DNA extracted by PEERS was significantly enriched for various types of faeces from different species, preservation time and conditions. It significantly improves the genotyping correctness and efficiency of genome resequencing with the total additional cost of $ 0.1 and a short incubation step to treat a faecal sample. We also provide methods to assess the enrichment efficiency of mitochondrial and nuclear DNA and models to predict the usability of faecal DNA for genotyping of short tandem repeat, single-nucleotide polymorphism and whole-genome resequencing.


Assuntos
DNA , Mamíferos , Animais , DNA Bacteriano/genética , DNA/genética , Fezes , Mamíferos/genética , Animais Selvagens/genética
18.
BMJ Open ; 14(1): e076571, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238175

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) is a progressive inflammatory autoimmune disease characterised by chronic systemic inflammation, which can cause swelling, stiffening and destruction of articular cartilage and bone. Early diagnosis and treatment of RA can improve outcomes and slow the progression of joint damage. Preliminary exploratory research had hinted an expected effect of modified Zhiwang decoction (MZWD) in treating early RA. However, few randomised clinical trials have evaluated the effectiveness of MZWD in early RA. Therefore, a parallel-group randomised controlled trial was designed to evaluate the efficacy and safety of MZWD combined with methotrexate (MTX) on early RA. METHODS AND ANALYSIS: This is a prospective, parallel-group, single-centre randomised controlled clinical study. A total of 150 patients will be randomly assigned to either the treatment (n=75) or control group (n=75). The treatment group will receive MZWD and MTX, and the control group will receive MTX for 12 weeks. The primary outcome of this study is Disease Activity Score-28, and the secondary outcomes are Fatigue Scale-14, Visual Analogue Scale pain scores and traditional Chinese medicine symptom scores. Safety outcomes, including adverse events and results of ECG and laboratory tests, will be monitored. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Clinical Research Ethics Committee of the China-Japan Friendship Hospital (no. 2022-KY-124) on 8 July 2022. The findings will be disseminated in peer-reviewed publications. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT05508815).


Assuntos
Antirreumáticos , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Humanos , Metotrexato/efeitos adversos , Estudos Prospectivos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/induzido quimicamente , Medicina Tradicional Chinesa/métodos , Medicamentos de Ervas Chinesas/efeitos adversos , Resultado do Tratamento , Método Duplo-Cego , Antirreumáticos/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251723

RESUMO

Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas de Saccharomyces cerevisiae , Humanos , Cromatina , Cryptococcus neoformans/genética , Saccharomyces cerevisiae/genética , Acetilação , Comportamento Imitativo , Adenosina Trifosfatases/metabolismo , Ubiquitinação , Resistência a Múltiplos Medicamentos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
J Nat Prod ; 87(2): 424-438, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38289177

RESUMO

Ever since the isolation of Amycolatopsis mediterranei in 1957, this strain has been the focus of research worldwide. In the last 60 years or more, our understanding of the taxonomy, development of cloning vectors and conjugation system, physiology, genetics, genomics, and biosynthetic pathway of rifamycin B production in A. mediterranei has substantially increased. In particular, the development of cloning vectors, transformation system, characterization of the rifamycin biosynthetic gene cluster, and the regulation of rifamycin B production by the pioneering work of Heinz Floss have made the rifamycin polyketide biosynthetic gene cluster (PKS) an attractive target for extensive genetic manipulations to produce rifamycin B analogues which could be effective against multi-drug-resistant tuberculosis. Additionally, a better understanding of the regulation of rifamycin B production and the application of newer genomics tools, including CRISPR-assisted genome editing systems, might prove useful to overcome the limitations associated with low production of rifamycin analogues.


Assuntos
Actinomycetales , Rifamicinas , Amycolatopsis , Vias Biossintéticas/genética , Rifamicinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...